牛求艺 考试资料 > 教案

整式加减教案(热门16篇)

教培参考

教育培训行业知识型媒体

发布时间: 2024-06-29 13:23:32

整式加减教案(1)

(一)教材所处的地位

人教版《数学》七年级上册第二章,本章由数到式,承前启后,既是有理数的概括与抽象,又是整式乘除和其他代数式运算的基础,也是学习方程、不等式和函数的基础。

(二)单元教学目标

(1)理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。

(2)理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号。在准确判断、正确合并同类项的基础上,进行整式的加减运算。

(3)理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算律性质在整式的加减运算中仍然成立。

(4)能分析实际问题中的数量关系,并列出整式表示 .体会用字母表示数后,从算术到代数的进步。

(5)渗透数学知识来源于生活,又要为生活而服务的辩证观点;通过由数的加减过渡到整式的加减的过程,培养学生由特殊到一般的思维;体会整式的加减实质上就是去括号,合并同类项,结果总是比原来简洁,体现了数学的简洁美。

(三)单元教学的重难点

(1)重点:理解单项式、多项式的相关概念;熟练进行合并同类项和去括号的运算。

(2)难点:准确地进行合并同类项,准确地处理去括号时的符号。

(四)单元教学思路及策略

(1)注意与小学相关内容的衔接。

(2)加强与实际的联系。

(3)类比“数”学习“式”,加强知识的内在联系,重视数学思想方法的渗透。

(4)抓住重难点、加强练习。

(五)学生学习易错点分析:

(1)忽视单项式的定义,误认为式子 是单项式。

(2)忽视单项式系数的定义,误认为 的系数是

(3)忽视单项式的次数的定义,误认为3a的次数是

(4)忽视多项式的定义,误认为 是单项式。

(5)忽视多项式的定义,误认为 的次数是

(6)忽视多项式的项的定义,误认为多项式 的项分别为 .

(7)把多项式的各项重新排列时,忽视要带它前面的符号。

(8)忽视同类项的定义,误认为2x3y4与-y4x3不是同类项。

(9)合并同类项时,误把字母的指数也相加。

(10) 去括号时符号的处理。

(11)两整式相减时,忽略加括号。

(六)教学建议:

(1)了解整式并学好合并同类项的关键是什么?

整式的加减法,实际上就是合并同类项,同类项的概念以及合并同类项的方法,是本章的重点,而同类项及其合并是以单项式为基础的,所以,单项式的概念或意义是完成合并的关键。

(2)单项式与多项式有什么联系与区别?

教材中先讲单项式、后讲多项式,然后概括为单项式、多项式统称为整式,对于单项式的系数,仅限于数字系数(单项式中的数字因数),这点务求仔细体会,切不可加以引申,而多项式没有系数;对于次数,单项式的次数指,所有字母的指数之和,而多项式的次数是多项式中次数最高的项(单项式)的次数,需要加以注意的问题是:单项式的系数,包括它前面的符号,不要把常数 作为字母,单项式x的系数是1,且单独一个数(零次单项式)或一个字母,也是单项式,对于0也是一个单项式;多项式的每一项都应包含它前面得符号;单项式和多项式得分母中不能含有字母。

(3)学习合并同类项的方法;

先把同类项分别作上记号,然后根据合并同类项的法则进行合并,合并后把多项式按某一字母降幂或升幂排列;当多项式中同类项的系数互为相反数时,合并后为0;

(4)什么是合并同类项中要加以注意的“两同”?

合并同类项是整式加减的基础,深入理解同类项的概念,又是掌握合并同类项的关键,教材中通过一个探究问题(三个填空题)的引入,进行比较、归纳,从而得出判断同类项的 “两同”标准:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项。几个常数项也是同类项,同类项至少有两个,单项式不叫同类项。

(5)其它注意事项:

①整式中,只含一项的是单项式,否则是多项式。分母中含有字母的代数式不是整式,当然也不是单项式或多项式。

②单项式的次数是所有字母的指数之和;多项式的次数是多项式中最高次项的次数。

③单项式的系数包括它前面的符号,多项式中每一项的系数也包括它前面的符号。

④去括号时,要特别注意括号前面是“-”号的情形。

(七)课时安排:

第1课时 单项式

第2课时 多项式

第3课时 整式的加减(1)------合并同类项

第4课时 整式的加减(2)------去括号

第5课时 整式的加减(3)------一般步骤

第6课时 整式的加减(4)------化简求值

第7课时 数学活动

第8课时 复习课

整式加减教案(2)

一、教材分析

本节内容是人民教育出版社出版《义务教育课程实验教科书(五四学制)数学》(供天津用)八年级下册第十章整式第一节整式加减第2小节整式的加减。

二、设计思想

本节内容是学生掌握了“整式”有关概念的延展学习,为后继学习整式运算、因式分解、一元二次方程及函数知识奠定基础,是“数”向“式”的正式过度,具有十分重要地位。

八年级学生已具有了较强的数的运算技能和“合并”的意识(解一元一次方程中用)同时也具有初步的观察、归纳、探索的技能。因此,我结合教材,立足让每个学生都有发展的宗旨,我采用合作探究的学习方式开展教学活动,通过设计有针对性、多样式的问题引导学生,给学生提供充足的、和谐的探索空间让学生学习。通过学习活动不但培养学生化简意识,提升数学运算技能而且让学生深刻体会到数学是解决实际问题的重要工具,增强应用数学的意识。

三、教学目标:

(一)知识技能目标:

1、理解同类项的含义,并能辨别同类项。

2、掌握合并同类项的方法,熟练的合并同类项。

3、掌握整式加减运算的方法,熟练进行运算。

(二)过程方法目标:

1、通过探究同类项定义、合并同类项的方法的活动,培养学生观察、归纳、探究的能力。

2、通过合并同类项、整式加减运算的练习活动,提高学生运算技能,提升运算的准确率培养学生化简意识,发展学生的抽象概括能力。

3、通过研究引例、探究例1的活动,发展学生的形象思维,初步培养学生的符号感。

(三)情感价值目标:

1、通过交流协商、分组探究,培养学生合作交流的'意识和敢于探索未知问题的精神。

2、通过学习活动培养学生科学、严谨的学习态度。

四、教学重、难点:

合并同类项

五、教学关键:

同类项的概念

六、教学准备:

教师:

1、筛选数学题目,精心设置问题情境。

2、制作大小不等的两个长方体纸盒实物模型,并能展开。

3、设计多媒体教学课件。(要凸显①单项式中系数、字母、指数的特征②长方体纸盒立体图、展开图。)

学生:

1、复习有关单项式的概念、有理数四则运算及去括号的法则。

2、每小组制作大小不等的两个长方体纸盒模型。

整式加减教案(3)

教学目标

①过实例体验整式加减的意义

②掌握整式的简单加减运算

③会运用整式的加减解决简单的实际问题

教学重点

本节的教学重点是整式的加减运算。

教学难点

例3的问题情境比较复杂,还涉及含有字母的代数式的大小比较,是本节教学的难点

教学方法

讲练法

教学用具

教学过程

集体备课稿个案补充

一、新课引入

甲、乙两个零件截面的面积哪一个比较大?大多少?把结果填在下面的横线上。

a1.5a

vb2b

b

甲乙

截面甲的面积是

截面乙的面积是

甲、乙的、两个截面面积的差是()—()=

本引例让学生思考后回答,教师引导,让学生知道:1、作差法是比较大小的一种很好的方法;2、在解决这个实际问题时,将问题转化成两个整式的差,从而得以解决;3、整式的加减可以归结为去括号和合并同类项。

二、讲授新课

例1求整式3x+4y与2x-2y-1的和

教师教会学生1、列式(注意整体性);2、去括号(特别是减法);3、有同类项就合并同类项(至少不能合并为止)。

变式练习:求3x+4y与2x-2y-1的差(学生做,两个学生板演)。

三、课堂练习(课本“做一做”)

1、填空:

(1)3x与-5y的和是,3x与-5y的差是;

(2)a-b,b-c,c-a三个多项式的和是。

2、先化简,再求值:3x^2-[x^2-2(3x-x^2)],其中x=-7。

四、典例分析

例2小红家的收入分农业收入和其他收入两部分,今年农业收入是其他收入的1.5倍。预计明年农业收入将减少20%,而其他收入将增加40%,那么预计小红家明年的全年总收入是增加,还是减少?

这个例题是本节课的难带内,教师可以设置下列问题:

1、分析题目的已知量与未知量,及相互间的关系;

2、选哪个未知量用字母来表示比较方?其他未知量怎么表示?

3、填空:设小红家今年其他收入为a元,则

(1)今年农业收入为元;

(2)预计明年农业收入为元;

(3)预计明年其他收入为元;

(4)今年全年总收入为元;

(5)预计明年全年总收入为元。

4、增加还是减少?怎么判断?

教师总结:在解决实际问题时,我们经常把其中的一个量或几个量先用字母表示,然后列出数式,这是运用数学解决实际问题的一个重要策略。

五、教学反馈(课本“课内练习”)

1、计算:

(1)3/2x^2-(-1/2x^2)+(-2x^2);

(2)2(x-3x^2+1)-3(2x^2-x-2).

2、先化简,再求值:

(1)5x-[3x-x(2x-3)],其中x=1/2;

(2)5(3a^2b-ab^2)—(ab^2+3a^2b),其中a=1/2,b=-1。

3,如果某三角形第一条边长为(2a-b)cm,第二条边比第一条边长(a+b)cm,第三条边比第一条边的2倍少bcm,第三条边比第一条边的2倍少bcm,求这个三角形的周长。

六.探究活动

猜数游戏:游戏甲方把自己的出生年月份乘以2,加10,再把和乘5,再加上他家的人口数(小于10),将这样所得的结果告诉游戏乙方,乙方就能猜出甲方出生于何月,及他家有几口人。

本题有较大的难度,采取合作学习这种方式进行,启发学生利用本节中例2的解题策略及思想方法来分析这个题目。

教师可作以下工作:

1、学生做甲方,教师做乙方猜测,让学生明白其中的奥秘(甲方告诉的结果的个位数字就是他家的人口数,结果减去人口数再减去50后除以10得到他的出生月份);

2、组内积极展开游戏,并讨论这个游戏的原理是什么。(设甲方出生月份为x,家中人口数为y人,甲方告诉的结果是k(已知数),则结果k=5(2ax+10)+y=10x+50+y,所以结果k的个位数字是y,则(k-y-50)/10=x)。

七、小结、布置作业

整式加减教案(4)

教学目标:

知识与技能:

1.理解单项式及单项式系数、次数的概念。

2.会准确迅速地确定一个单项式的系数和次数。

3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识。

过程与方法:

通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。

分层次教学,讲授、练习相结合。

情感、态度、价值观:

培养学生观察、归纳、概括及运算能力

教学重点:

掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。

教学难点:单项式概念的建立。

教学过程:

一、复习引入:

1、列代数式

(1)若正方形的边长为a,则正方形的面积是;

(2)若三角形一边长为a,并且这边上的高为h,则这个三角形的面积为;

(3)若x表示正方形棱长,则正方形的体积是

(4)若m表示一个有理数,则它的相反数是;

(5)小明从每月的零花钱中贮存x元钱捐给希望工程,一年下来小明捐款 元。

(让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育。)

2、请学生说出所列代数式的意义。

3、请学生观察所列代数式包含哪些运算,有何共同运算特征。

由小组讨论后,经小组推荐人员回答,教师适当点拨。

(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。)

二、讲授新课:

1.单项式:

通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并板书归纳得出的单项式的概念,即由数与字母的乘积组成的代数式称为单项式。然后教师补充,单独一个数或一个字母也是单项式,如a,5。

2.练习:判断下列各代数式哪些是单项式? (1)x?12; (2)abc; (3)b2; (4)-5ab2; (5)y; (6)-xy2; (7)-5。

(加强学生对不同形式的单项式的直观认识,同时利用练习中的单项式转入单项式的系数和次数的教学)

3.单项式系数和次数:

直接引导学生进一步观察单项式结构,总结出单项式是由数字因数和字母因数两部分组成的。以四个单项式a2h,2πr,abc,-m为例,让学生说出它们31的数字因数是什么,从而引入单项式系数的概念并板书,接着让学生说出以上几个单项式的字母因数是什么,各字母指数分别是多少,从而引入单项式次数的概念并板书。

4.例题:

例1:判断下列各代数式是否是单项式。如不是,请说明理由;如是,请指出它的系数和次数。

①x+1; ②1x; ③πr2; ④-3a2b. 2

答:①不是,因为原代数式中出现了加法运算;②不是,因为原代数式是1与x的商;③是,它的系数是π,次数是2;④是,它的系数是-32,次数是3。

例2:下面各题的判断是否正确?

①-7xy2的系数是7;②-x2y3与x3没有系数;③-ab3c2的次数是0+3+2; ④-a3的系数是-1;⑤-32x2y3的次数是7; ⑥1πr2h的系数是1. 33

通过其中的反例练习及例题,强调应注意以下几点:

①圆周率π是常数;②当一个单项式的系数是1或-1时,“1”通常省略不写,如x2,-a2b等; ③单项式次数只与字母指数有关。

5.游戏:

规则:一个小组学生说出一个单项式,然后指定另一个小组的学生回答他的系数和次数;然后交换,看两小组哪一组回答得快而准。

6.课堂练习:课本p56:1,2。

三、课堂小结:

①单项式及单项式的系数、次数。

②根据教学过程反馈的信息对出现的问题有针对性地进行小结。

③通过判断一个单项式的系数、次数,培养学生理解运用新知识的能力,已达到本节课的教学目的。

四、作业设计

课本p59:1,2。

整式加减教案(5)

教学目的

1、使学生在掌握合并同类项、去括号法则基础上进行整式的加减运算。

2、使学生掌握整式加减的一般步骤,熟练进行整式的加减运算。

教学分析

重点:整式的加减运算。

难点:括号前是-号,去括号时,括号内的各项都要改变符号。

突破:正确理解去括号法则,并会把括号与括号前的符号理解成整体。

教学过程

一、复习

1、 叙述合并同类项法则。

2、 练习题:(用投影仪显示、学生完成)

3、 叙述去括号与添括号法则。

4、 练习题:(用投影仪显示、学生完成)

5、化简:

y2+(x2+2xy-3y2)-(2x2-xy-2y2)

二、新授

1、引入

整式的化简,如果有括号,首先要去括号,然后合并同类项,所以去括号和合并同类项是整式加减的基础。

2、例题

例1 (P166例1)(学生自学后,教师按以下提示点拔即可)

求单项式5x2y,-2 x2y,2xy2,-4xy2的和。

提示:式子5x2y+(-2 x2y)+2xy2+(-4xy2)就是这四个单项式的和。几个整式相加减,通常用括号把每一个整式括号起来,再用加减号连接。

解:(略,见教材P166)

练习:P167 1、2

例2(P166例2)

求3x2-6x+5与4x2-7x-6的和。

解:(3x2-6x+5)+(4x2-7x-6) (每个多项式要加括号)(口述:文字叙述的整式加减,对每个整式要添上括号)

=3x2-6x+5+4x2-7x-6 (去括号)

=7x2+x-1 (合并同类项)

练习:P167 3

例3。(P166例3)(学生自学后,完成练习,教师矫正练习错误)

求2x2+xy+3y2与x2-xy+2y2的差。

解:(2x2+xy+3y2)-( x2-xy+2y2)

= 2x2+xy+3y2-x2+xy-2y2

=x2+2xy+y2

3、归纳整式加减的一般步骤。(最好由学生归纳)

整式加减实际上就是合并同类项。在运算中,如果遇到括号,按去括号法则,先去括号,再合并同类项。

三、练习

补:已知:A=5a2-2b2-3c2,B=-3a2+b2+2c2,求2A-3B(视时间是否足够而定)

四、小结(用投影仪板演)

1、文字叙述的整式加减,对每一个整式要添上括号。

2、有括号的要先去括号,如果双有中括号或大括号,要先去小括号,后去中括号,再去大括号。

五、作业

1、 P169:A:1(3、4),3,5,6,7,8。B:1,2。(可适当减少些)

整式加减教案(6)

教材分析

本节课的主要内容是通过用字母表示简单的数量关系引出单项式及有关的概念,为进一步学习多项式、整式的加减做充分的准备。

学情分析:

在小学他们已经学习过用字母表示数,这对于他们进一步学习用字母表示简单的数量关系是有帮助的,因此在教学过程中除了引导他们正确地用字母表示数量关系外,应把重点放在他们对单项式有关概念的理解和运用上,为整式的加减做准备。

教学目标:

知识与技能

1、了解代数式的概念,会列代数式表示简单的数量关系,掌握代数式的书写注意事项;

2、理解单项式的概念,掌握单项式的系数和次数的概念,能判断一个代数式是不是单项式,对于一个单项式能说出它的系数和次数。

过程与方法

1、通过练习、合作探究用字母表示简单的数量关系,

2、通过引导学生自主学习、合作学习及变式训练掌握单项式、单项式的系数和次数的概念。

情感态度与价值观

1、通过观察、体验、运用,让学生经历探索数量关系和变化规律的过程,感受到用字母表示数的优越性。

2、在进一步理解用字母表示数量关系的过程中建立符号意识,激发学生学习数学的积极性。

教学重点难点及突破

1、本节课的直接目标是让学生了解用字母表示数的概念,理解单项式有关的概念,能分清代数式中的那些是单项式,并知道它们的系数和次数。

2、重难点的突破在于用字母表示数量关系及理解单项式有关的概念。

教学准备:

多媒体课件

【教学设计】

一 、课前复习

字母表示数有什么意义?

(要求:自己思考1分钟,然后师友面对面,学友说给学师听!如果学友说不出,学师给学友说一遍,然后学友再说,意见达成一致后举手给全班说。)

(电子白板出示)用字母表示数,字母和数一样可以参与运算,可以用式子把数量关系简明地表示出来,更适合于一般规律的表达。

二 、教学过程

(一)出示学习目标,引入新课 (幻灯片)

1、理解单项式及单项式的系数、次数的概念。(重点)

2、会准确迅速地确定一个单项式的系数和次数。

3、能用单项式表示具体问题中的数量关系。(难点)

(二)自主学习(幻灯片)

认真学习课本56页思考——例题3上面的内容。并完成《作业与测试》第41页自主预习的两个小题!(5—7分钟)

(要求:自主完成《作业与测试》 ,完成之后师友交流,意见达成一致后,举手答题!)

1单项式的含义:只有数与字母的积的代数式。

单独的一个数字或字母也叫单项式.

2单项式中的数字因数叫做这个单项式的系数.

3一个单项式中,所有字母指数的和叫做这个单项式的次数.(幻灯片)

(三)合作探究

1、练习1 下列各式中哪些是单项式?如果不是,说下原因!

《整式---单项式》教学设计

(要求:个人观察思考,然后师友面对面,学友说给学师听,意见不一致可以讨论一下,意见一致后举手展示!)

学生展示完后出示结果:

《整式---单项式》教学设计

2、练习2填表:

《整式---单项式》教学设计

温馨提示:个人先观察思考,在练习本上写出答案,然后师友面对面,学师学友对一下结果,,意见不一致可以讨论一下,意见一致后举手展示!

学生展示完后出示答案!教师根据具体情况总结一下。

3、练习3 用单项式填空,并指出它们的系数和次数:

(比比谁快:个人先观察思考,在练习本上写出答案,然后师友面对面,学师学友对一下结果,,意见不一致可以讨论一下,意见一致后举手展示!)

(1)每包书有12册,n包书有 册;

(2)底边长为 a cm,高为 h cm的三角形的面积是 cm2;

(3)棱长为 a cm的正方体的体积是 cm3 ;

(4)一台电视机原价 a 元,现按原价的9折出售, 这台电视机现在的售价

是 元;

(5)一个长方形的长是0.9 m,宽是a m ,这个长方形的面积是 m2.

学生展示完后出示结果:

(四)拓展提高

我思我进步:

用字母表示数后,同一个式子在不同的问题中可以表示不同的含义。例如,在问题(5)、(6)中,所填的结果都是0.9a,一个是表示电视机的售价,一个表示长方形的面积,你还能赋予0.9a一个含义吗?

(一本书的价格是0.9a元,这块黑板的长是0.9a。)

在书写单项式时:归纳PPT

单项式的注意点

(1)圆周率π是常数。

(2)如果单项式是单独的字母,那么它的系数是1。如:单项式c的系数是1。

(3)当一个单项式的系数是1或–1时,“1”通常省略不写,但不要误认为是0,如: a,–abc。

(4)单项式的系数是带分数时,还常写成假分数,如: x2y 写成 x2y。

(5)单独的数字不含字母,所以它的次数是零次.

(6)单项式的系数包括它前面的符号,且只与数字因数有关。而次数只与字母有关。

三、课堂小结

让学生谈谈本节课的收获!

学友先说,学师补充的方式进行。

1、单项式(注意单个数或字母也是单项式)

2、单项式的系数(要包括其前面的负号)

3、单项式的次数(所有字母指数和)

四、布置作业

《作业与测试》整式(1)随堂学练与课后作业。

作业要求:

1、独立完成作业的良好习惯,是成长过程中的良师益友。

2、学友完成之后交学师看,学师的组长看,老师看组长的以及所有同学的作业!同时看学师的批改作业情况!

整式加减教案(7)

第1课时合并同类项

了解同类项、合并同类项的概念,掌握合并同类项法则,能正确合并同类项.

能先合并同类项化简后求值.

阅读教材P62~65,思考下列问题.

什么是同类项?怎样合并同类项?

知识探究

把多项式中的同类项合并成一项叫做合并同类项.

合并同类项的法则:系数相加,字母和字母指数不变.

自学反馈

若2x2yn与-3xmy4是同类项,则m=2,

判断下列各题中的两个项是否是同类项,如果不是,请说明原因:

(1)4与-12;(是)

(2)32与a2;(不是,原因略)

(3)2x与2x;(不是,原因略)

(4)3mn与3mnp;(不是,原因略)

(5)2πr与-3x;(不是,原因略)

(6)3a2b与(不是,原因略)

合并同类项.[来源]

(1)3x2-2xy+y2-x2+2xy;

(2)2a2b-3a2b+12a2b;

(3)a3-a2b+ab2+a2b-ab2+b3;

(4)4x2-8x+5-3x2+

解:(1)2x2+(2)(3)a3+(4)x2-2x+

(1)同类项与字母的顺序无关;(2)合并同类项中系数求和时注意符号问题.

活动1小组讨论

例1合并同类项.

(1)4a2+3b2+2ab-4a2-3b2;

(2)3x-2x2+5+3x2-2x-5;

(3)a3+a2b+ab2-a2b-ab2-b3;

(4)6a2-5b2+2ab+

解:(1)(2)x2+(3)(4)

例2求多项式5x2+4x-6x2-x+2x2-3x-1的值,其中

解:原式当x=-3时,原式

先化简,再带值.

例3(1)水库水位第一天连续下降了a h,每小时平均下降2 cm;第二天连续上升了a h,每小时平均上升 cm,这两天水位总的变化情况如何?

(2)某商店原有5袋大米,每袋大米为x 上午卖出3袋,下午又购进同样包装的大米4袋.进货后这个商店有大米多少千克?

解:(1)把下降的水位变化量记为负,上升的水位变化量记为正.第一天水位的变化量是-2a cm,第二天水位的变化量是

两天水位的总变化量(单位:cm)是

-2a+(-2+)

这两天水位总的变化情况为下降了

(2)把进货的数量记为正,售出的数量记为负.

进货后这个商店共有大米(单位:kg)

5x-3x+4x=(5-3+4)

活动2跟踪训练

已知-2an-1b4与a2bm+1是同类项,则

合并同类项.

(1)-ayb-4a2b+4ab2+2a2b;

(2)a2-2-3a+

解:(1)-2a2b+(2)

先化简,再求值:

13x3-2x2+23x3+3x2+5x-4x+7,其中

解:原式=x3+x2+x+当时,原式

活动3课堂小结

同类项:(1)所含字母相同;(2)相同字母的指数也相同.

合并同类项:把多项式中的同类项合并成 一项.

合并同类项法则.

第2课时去 括号

探究去括号法则,并且利用去括号法则将整式化简.

发现去括号时的符号变化的规律,归纳出去括号法则.

阅读教材P65~67,思考下列问题:如何去掉括号,分几种情况?

知识探究

去括号时,如果括号外的符号是正号,去括号后原括号内各项的符号与原来的符号相同;如果括号外的符号是负号,去括号后原括号内各项的符号与原来的符号相反.

自学反馈

去括号:

(1)-(-a+b)+(-c+d)=a-b-c+d;

(2)x-3(y-1)=x-3y+3;

(3)-2(-y+8x)

下列去括号过程是否正确?若不正确,请改正.

(1)a-(-b+c-d)=a+b+c-d;(不正确)a+b-c+d;

(2)a+(b-c-d)=a+b+c+d;(不正确)a+b-c-d;

(3)-(a-b)+(c-d)=-a-b+c-d;(不正确)-a+b+

化简a+b+(a-b)的最后结果是(C)

+

去括号有两种情况最容易出错:(1)当括号前面含有因数时,根据乘法分配律,这个因数要与括号里面的各项都相乘,不要漏乘;(2)当括号前面是“-”号时,括号里面的各项符号都要改变.

活动1小组讨论

例去括号,再合并同类项:

(1)x-(3x-2)+(2x+3);

(2)(3a2+a-5)-(4-a+7a2);

(3)(2m-3)+m-(3m-2);

(4)3(4x-2y)-3(-y+8x).

解:(1) (2)-4a2+(3)(4)[来源:学_科_网]

活动2跟踪训练

下列去括号中,正确的是(C)

(2a-1)=a2-2a-1

+(-2a-3)=a2-2a+3

[5b-(2c-1)]=3a-5b+2c-1

(a+b)+(c-d)=-a-b-c+d

当a=5时,则(a2-a)-(a2-2a+1)的值为(A)

去括号,并合并同类项:

(1)-(5m+n)-7(m-3n);

(2)-2(xy-3y2)-[2y2-(5xy+x2)+2xy].

解:(1)-12m+(2)xy+4y2+

活动3课堂小结

去括号法则.

第3课时整式的加减

进一步熟悉掌握去括号、合并同类项运算.

掌握整式加减运 算在实际问题中的应用.

能进行整式的加减混合运算,能准确处理括号问题.

阅读教材P67~69,思考下列问题.

如何进行整式的运算.

知识探究

整式加减混合运算法则:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.

自学反馈

化简下列各题:

(1)-3(2x-y)-2(4x+12y)+2 009;

(2)-[2m-3(m-n+1)-2]

解:(1)-14x+2y+(2)m-3n+

去一层括号合并一次同类项,不要只去括 号,到最后一次合并同类项,那样式子做起来比较复杂.

活动1小组讨论

计算:

(1)3(ab-2c)-5(-ab-c);

(2)2x2-3[3x-2(-x2+2x-1)-4].

解:(1)(2)-4x2+3x+

先化简,再求值:-3[y-(3x2-3xy)]-[y+2(4x2-4xy)],其中x=-3,

解:原式当x=-3,y=13时,原式

活动2跟踪训练

化简求值.

(1)2x2-[x2-2(x2-3x-1)-3(x2-1-2x)],其中x=12;

(2)2(ab2-2a2b)-3(ab2-a2b)+(2ab2-2a2b),其中a=2,

解:(1)原式当x=12时,原式

(2)原式当a=2,b=1时,原式

已知M=3x2-2xy+y2,N=2x2+xy-3y2,求:

(1)M-N;(2)M+

解:(1)x2-3xy+(2)

活动3课堂小结

整式加减混合运算法则:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.

整式加减教案(8)

教学目的:

知识与技能目标:

会进行整式加减的运算,并能说 明其中 的算理,发 展有条理的思考及其语言表达能力。

过程与方法:

通过探索 规律的问 题,进一步体会符号表示的意义,

通过 对整式加减的学习,深入体会代数式在实际生活中的应用,它为后面学习方程(组)、不等式及函数等知识打下良好的基础,同时,也使我们体会到数学知识的产生来源于实际生产和生活的需求,反之,它又服务于实际生活的方方面面.

教学重点、难点:

重点:整式加减的运算。

难点:探索规律的猜想。

授课时间:

教学过程:

Ⅰ.创设现实情景,引入新课

摆第1个小屋子需要5枚棋子,摆第2个需要 枚棋 子,摆 第3个需要 枚棋子。

按照这样的方式继续摆下去。

(1)摆第10个这样的小屋子需要 枚棋子

(2)摆第n个这样的小屋子需要多少枚棋子?你是如何得到的?你能用不同的方法解决这个问 题吗?小组讨论。

Ⅱ.根据现实情景,讲授新课

例题讲解:

练习:1、计算:

(1)(11x3-2x2)+2(x3-x2) (2)(3a2+2a-6)-3(a2-1)

(3)x-(1-2x+x2)+(-1-x2) (4)(8x y-3x2)-5xy-2(3xy-2x2)

2、已知:A=x3-x2-1,B=x2-2,计算:(1)B-A (2)A-3B

Ⅲ.做一做

P11 随堂练习

Ⅳ.课时小结

要善于在图形变化中发现规律,能熟练的对整式加减进行运算。

Ⅴ.课后作业

P12习题:1(2)、(3)、(6),2。

板书设计:

第二节 整式的加减(2)

一、旅游中发现的几何体

二、生活中常见的几何体

教学后记

整式加减教案(9)

(一)教材所处的地位

人教版《数学》七年级上册第二章,本章由数到式,承前启后,既是有理数的概括与抽象,又是整式乘除和其他代数式运算的基础,也是学习方程、不等式和函数的基础。

(二)单元教学目标

(1)理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。

(2)理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号。在准确判断、正确合并同类项的基础上,进行整式的加减运算。

(3)理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算律性质在整式的加减运算中仍然成立。

(4)能分析实际问题中的数量关系,并列出整式表示 .体会用字母表示数后,从算术到代数的进步。

(5)渗透数学知识来源于生活,又要为生活而服务的辩证观点;通过由数的加减过渡到整式的加减的过程,培养学生由特殊到一般的思维;体会整式的加减实质上就是去括号,合并同类项,结果总是比原来简洁,体现了数学的简洁美。

(三)单元教学的重难点

(1)重点:理解单项式、多项式的相关概念;熟练进行合并同类项和去括号的运算。

(2)难点:准确地进行合并同类项,准确地处理去括号时的符号。

(四)单元教学思路及策略

(1)注意与小学相关内容的衔接。

(2)加强与实际的联系。

(3)类比“数”学习“式”,加强知识的内在联系,重视数学思想方法的渗透。

(4)抓住重难点、加强练习。

(五)学生学习易错点分析:

(1)忽视单项式的定义,误认为式子 是单项式。

(2)忽视单项式系数的定义,误认为 的系数是

(3)忽视单项式的次数的定义,误认为3a的次数是

(4)忽视多项式的定义,误认为 是单项式。

(5)忽视多项式的定义,误认为 的次数是

(6)忽视多项式的项的定义,误认为多项式 的项分别为 .

(7)把多项式的各项重新排列时,忽视要带它前面的符号。

(8)忽视同类项的定义,误认为2x3y4与-y4x3不是同类项。

(9)合并同类项时,误把字母的指数也相加。

(10) 去括号时符号的处理。

(11)两整式相减时,忽略加括号。

(六)教学建议:

(1)了解整式并学好合并同类项的关键是什么?

整式的加减法,实际上就是合并同类项,同类项的概念以及合并同类项的方法,是本章的重点,而同类项及其合并是以单项式为基础的,所以,单项式的概念或意义是完成合并的关键。

(2)单项式与多项式有什么联系与区别?

教材中先讲单项式、后讲多项式,然后概括为单项式、多项式统称为整式,对于单项式的系数,仅限于数字系数(单项式中的数字因数),这点务求仔细体会,切不可加以引申,而多项式没有系数;对于次数,单项式的次数指,所有字母的指数之和,而多项式的次数是多项式中次数最高的项(单项式)的次数,需要加以注意的问题是:单项式的系数,包括它前面的符号,不要把常数 作为字母,单项式x的系数是1,且单独一个数(零次单项式)或一个字母,也是单项式,对于0也是一个单项式;多项式的每一项都应包含它前面得符号;单项式和多项式得分母中不能含有字母。

(3)学习合并同类项的方法;

先把同类项分别作上记号,然后根据合并同类项的法则进行合并,合并后把多项式按某一字母降幂或升幂排列;当多项式中同类项的系数互为相反数时,合并后为0;

(4)什么是合并同类项中要加以注意的“两同”?

合并同类项是整式加减的基础,深入理解同类项的概念,又是掌握合并同类项的关键,教材中通过一个探究问题(三个填空题)的引入,进行比较、归纳,从而得出判断同类项的 “两同”标准:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项。几个常数项也是同类项,同类项至少有两个,单项式不叫同类项。

(5)其它注意事项:

①整式中,只含一项的是单项式,否则是多项式。分母中含有字母的代数式不是整式,当然也不是单项式或多项式。

②单项式的次数是所有字母的指数之和;多项式的次数是多项式中最高次项的次数。

③单项式的系数包括它前面的符号,多项式中每一项的系数也包括它前面的符号。

④去括号时,要特别注意括号前面是“-”号的情形。

(七)课时安排:

第1课时 单项式

第2课时 多项式

第3课时 整式的加减(1)------合并同类项

第4课时 整式的加减(2)------去括号

第5课时 整式的加减(3)------一般步骤

第6课时 整式的加减(4)------化简求值

第7课时 数学活动

第8课时 复习课

整式加减教案(10)

教学目标:

理解同类项的概念,在具体情景中认识同类项.

初步体会数学与人类生活的密切联系.

教学重点:理解同类项的概念.

教学难点:根据同类项的概念在多项式中找同类项.

教学过程:

一、复习引入

创设问题情境

(1)5个人+8个人=;?

(2)5只羊+8只羊=;?

(3)5个人+8只羊

观察下列各单项式,把你认为类型相同的式子归为一类.

8x2y, -mn2, 5a, -x2y, 7mn2,, 9a, -, 0, ,,

由学生小组讨论后,按不同标准进行多种分类,教师巡视后把不同的分类方法投影显示出来.

要求学生观察归为一类的式子,思考它们有什么共同的特征?

请学生说出各自的分类标准,并且肯定每一位学生按不同标准进行的分类.

二、讲授新课

同类项的定义:

我们常常把具有相同特征的事物归为一类.8x2y与-x2y可以归为一类,2xy2与-可以归为一类,-mn2、7mn2与可以归为一类,5a与9a可以归为一类,还有、0与也可以归为一类.8x2y与-x2y只有系数不同,各自所含的字母都是x、y,并且x的指数都是2,y的指数都是1;同样地,2xy2与-也只有系数不同,各自所含的字母都是x、y,并且x的指数都是1,y的指数都是

像这样,所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.另外,所有的常数项都是同类项.比如,前面提到的、0与也是同类项.

例题:

【例1】判断下列说法是否正确,正确地在括号内打“√”,错误的打“×”.

(1)3x与3mx是同类项.()

(2)2ab与-5ab是同类项. ()

(3)3x2y与-yx2是同类项.()

(4)5ab2与-2ab2c是同类项. ()

(5)23与32是同类项.()

【例2】指出下列多项式中的同类项:

(1)3x-2y+1+3y-2x-5;

(2)3x2y-2xy2+

【例3】k取何值时,3xky与-x2y是同类项?

【例4】若把(s+t)、(s-t)分别看作一个整体,指出下面式子中的同类项.

(1) (s+t)-(s-t)-(s+t)+(s-t);

(2)2(s-t)+3(s-t)2-5(s-t)-8(s-t)2+

课堂练习:请写出2ab2c3的一个同类项.你能写出多少个?它本身是自己的同类项吗?

三、课时小结

理解同类项的概念,会在多项式中找出同类项,会写出一个单项式的同类项,会判断几个单项式是否是同类项.

这堂课运用到分类思想和整体思想等数学思想方法.

学习同类项的用途是为了简化多项式,为下一课的合并同类项打下基础.

四、课堂作业

若2amb2m+3n与a2n-3b8的和仍是一个单项式,则m与 n的值分别是.?

第2课时合并同类项

教学目的:

理解合并同类项的概念,掌握合并同类项的法则.

渗透分类和类比的思想方法.

教学重点:正确合并同类项.

教学难点:找出同类项并正确地合并.

教学过程:

一、复习引入

为了搞好班会活动,李明和张强去购买一些水笔和软面抄作为奖品.他们首先购买了15本软面抄和20支水笔,经过预算,发现这么多奖品不够用,然后他们又去购买了6本软面抄和5支水笔.问:

他们两次共买了多少本软面抄和多少支水笔?

若设软面抄的单价为每本x元,水笔的单价为每支y元,则这次活动他们支出的总金额是多少元?

二、讲授新课

合并同类项的定义:

(学生讨论问题2)可根据购买的时间次序列出代数式,也可根据购买物品的种类列出代数式,再运用加法的交换律与结合律将同类项结合在一起,将它们合并起来,化简整个多项式,所得结果都为(21x+25y)元.

由此可得:把多项式中的同类项合并成一项,叫做合并同类项.(板书:合并同类项.)

例题:

【例1】找出多项式3x2y-4xy2-3+5x2y+2xy2+5中的同类项,并合并同类项.

根据以上合并同类项的实例,让学生讨论、归纳,得出合并同类项的法则:

把同类项的系数相加,所得的结果作为系数,字母和字母指数保持不变.

【例2】下列各题合并同类项的结果对不对?若不对,请改正.

(1)2x2+3x2=5x4;(2)3x+2y=5xy;

(3)7x2-3x2=4; (4)

【例3】合并下列多项式中的同类项:

(1)2a2b-3a2b+;

(2)a3-a2b+ab2+a2b-ab2+b3;

(3)5(x+y)3-2(x-y)4-2(x+y)3+(y-x)

(用不同的记号标出各同类项,会减少运算错误,当然熟练后可以不再标出.其中第(3)题应把(x+y)、(x-y)看作一个整体,特别注意(x-y)2n=(y-x)2n,n为正整数.)

【例4】求多项式3x2+4x-2x2-x+x2-3x-1的值,其中

试一试把x=-3直接代入例4这个多项式,可以求出它的值吗?与上面的解法比较一下,哪个解法更简便?

(通过比较这两种方法,使学生认识到:在求多项式的值时,常常先合并同类项,再求值,这样比较简便.)

课堂练习:课本P65练习第1,2,3题.

三、课时小结

要牢记法则,熟练正确地合并同类项,以防止出现类似2x2+3x2=5x4的错误.

从实际问题中类比概括得出合并同类项法则并能运用法则,正确地合并同类项.

四、课堂作业

课本P69习题的第1题.

第3课时去括号

教学目标:

能运用运算律探究去括号法则,并且利用去括号法则将整式化简.

经历带有括号的有理数的运算,发现去括号时符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.

教学重点:准确应用去括号法则将整式化简.

教学难点:括号前面是“-”号,去括号时,括号内各项要变号,容易产生错误.

整式加减教案(11)

[学习目标]

1、认识同类项,理解合并同类项法则,能进行同类项的合并。

2、能运用运算率去括号

[考点归纳]

考点1: 合并同类项 考点2: 去括号法则 考点3: 整式的加减

[考点例题]

例合并下列多项式中的同类项.

(1)4x2y-8xy2+7-4x2y+10xy2-4; (2)a2-2ab+b2+a2+2ab+

例 去括号,合并同类项

(1)-3(2s-5)+6s (2)3x-[5x-3( x-4)]

(3)6a2-4ab-4(2a2+ ab) (4)

例(1)已知一个多项式与a2-2a+1的和是a2 +a-1,求这个多项式。

(2)已知A=2x2+y2+2z,B=x2-y2 +z ,求2(A-B)+B

[当堂检测]

将如图两个框中的同类项用线段连起来:

当m=________时,-x3b2m与 x3b是同类项.

如果5akb与-4a2b是同类项, 那么5akb+(-4a2b)

4、下列说法正确的是( )

字母相同的项是同类项 只有系数不同的项,才是同类项

与是同类项 与xy2是同类项

5合并下列多项式中的同类项.

(1)4x2y-8xy2+7-4x2y+10xy2-4; (2)a2-2ab+b2+a2+2ab+

2 先化简,再求值。

(1)(5a2-3b2)+(a2-b2)- (5a2-2b2) 其中a=-1,b=1

(2)9a3-[-6a2+2(—a3- a2)] 其中a=-2

求 的值。

[课外练习]

下列合并同类项正确的是 ( )

7a2+2a3=9a2 3a2b-2ba2=a2b

减去 等于 ( )

; ;

;

当 与 时,代数式 的两个值 ( )

相等; 互为倒数;

互为相反数; 既不相等也不互为相反数

4下列各题中,去括号正确的是 ( )

整式加减教案(12)

教学目标

【知识与技能】

理解同类项的概念,在具体情景中,认识同类项.

【过程与方法】

通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流的能力.

【情感、态度与价值观】

初步体会数学与实际生活的密切联系,从而激发学生学好数学的信心.

教学重难点

【重点】理解同类项的概念.

【难点】根据同类项的概念在多项式中找同类项.

教学过程

一、复习引入

师:同学们,在上新课之前,我们先来做几个题目.

教师读题,指名回答.

(1)5个人+8个人=;?

(2)5只羊+8只羊

师:观察下列各单项式,把你认为相同类型的式子归为一类:8x2y,-mn2,5a,-x2y,7mn2,,9a,-,0,,,

由学生小组讨论后,按不同标准进行多种分类,教师巡视后把不同的分类方法投影显示.

要求学生观察归为一类的式子,思考它们有什么共同的特征.

请学生说出各自的分类标准,并且对学生按不同标准进行的分类给予肯定.

二、讲授新课

同类项的定义:

师:在生活中我们常常把具有相同特征的事物归为一类.8x2y与-x2y可以归为一类,2xy2与-可以归为一类,-mn2、7mn2与可以归为一类,5a与9a可以归为一类,还有、0与也可以归为一类.8x2y与-x2y只有系数不同,各自所含的字母都是x、y,并且x的指数都是2,y的指数都是1;同样地,2xy2与-也只有系数不同,各自所含的字母都是x、y,并且x的指数都是1,y的指数都是

像这样,所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.另外,所有的常数项都是同类项.比如,前面提到的、0与也是同类项.

通过特征的讲述,选择所含字母相同,并且相同字母的指数也分别相等的项作为研究对象,并称它们为同类项.(板书课题:同类项)

(教师为了让学生理解同类项概念,可设问同类项必须满足什么条件,让学生归纳总结)

板书由学生归纳总结得出的同类项概念以及所有的常数项都是同类项.

三、例题讲解

教师读题,指名回答.

【例1】判断下列说法是否正确,正确的在括号内打“√”,错误的打“×”.

(1)3x与3mx是同类项.()

(2)2ab与-5ab是同类项.()

(3)3x2y与-yx2是同类项.()

(4)5ab2与-2ab2c是同类项.()

(5)23与32是同类项.()

(这组判断题能使学生清楚地理解同类项的概念,其中第(3)题满足同类项的条件,只要运用乘法交换律即可;第(5)题两个都是常数项属于同类项.一部分学生可能会单看指数不同,误认为不是同类项)

【例2】游戏.

规则:一学生说出一个单项式后,指定一位同学回答它的两个同类项.

要求出题同学尽可能使自己的题目与众不同.

可请回答正确的同学向大家介绍写一个单项式同类项的经验,从而揭示同类项的本质特征,透彻理解同类项的概念.

【例3】指出下列多项式中的同类项:

(1)3x-2y+1+3y-2x-5;

(2)3x2y-2xy2+

【答案】(1)3x与-2x是同类项,-2y与3y是同类项,1与-5是同类项.

(2)3x2y与-yx2是同类项,-2xy2与xy2是同类项.

【例4】k取何值时,3xky与-x2y是同类项?

【答案】要使3xky与-x2y是同类项,这两项中x的次数必须相等,即所以当k=2时,3xky与-x2y是同类项.

【例5】若把(s+t)、(s-t)分别看作一个整体,指出下面式子中的同类项.

(1)(s+t)-(s-t)-(s+t)+(s-t);

(2)2(s-t)+3(s-t)2-5(s-t)-8(s-t)2+

(组织学生口头回答上面三个例题,例3多项式中的同类项可由教师标出不同的下划线,并运用投影仪给出书面解答,为合并同类项做准备.例4让学生明确同类项中相同字母的指数也相同.例5必须把(s-t)、(s+t)分别看作一个整体)

通过变式训练,可进一步明晰“同类项”的意义,在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、提高识别能力.

四、课堂练习

请写出2ab2c3的一个同类项.你能写出多少个?它本身是自己的同类项吗?

(学生先在课本上解答,再回答,若有错误请其他同学及时纠正)

【答案】改变2ab2c3的系数即可,与其本身也是同类项.

五、课堂小结

理解同类项的概念,会在多项式中找出同类项,会写出一个单项式的同类项,会判断同类项.

第2课时合并同类项

教学目标

【知识与技能】

理解合并同类项的概念,掌握合并同类项的法则.

【过程与方法】

经历概念的形成过程和法则的探究过程,渗透分类和类比的思想方法.培养观察、归纳、概括能力,发展应用意识.

【情感、态度与价值观】

在独立思考的基础上,积极参与讨论,敢于发表自己的观点,从交流中获益.

教学重难点

【重点】正确合并同类项.

【难点】找出同类项并正确的合并.

教学过程

一、情境引入

师:为了搞好班会活动,李明和张强去购买一些水笔和软面抄作为奖品.他们首先购买了15本软面抄和20支水笔,经过预算,发现这么多奖品不够用,然后他们又去购买了6本软面抄和5支水笔.问:

(1)他们两次共买了多少本软面抄和多少支水笔?

(2)若设软面抄的单价为每本x元,水笔的单价为每支y元,则这次活动他们支出的总金额是多少元?

学生完成,教师点评.

二、讲授新课

合并同类项的定义.

学生讨论问题(2)可根据购买的时间次序列出代数式,也可根据购买物品的种类列出代数式,再运用加法的交换律与结合律将同类项结合在一起,将它们合并起来,化简整个多项式,所得结果都为(21x+25y)元.

由此可得:把多项式中的同类项合并成一项,叫做合并同类项.

三、例题讲解

【例1】找出多项式3x2y-4xy2-3+5x2y+2xy2+5中的同类项,并合并同类项.

【答案】原式=3x2y+5x2y-4xy2+2xy2+5-3=(3+5)x2y+(-4+2)xy2+(5-3)=8x2y-2xy2+

根据以上合并同类项的实例,让学生讨论归纳,得出合并同类项的法则:

把同类项的系数相加,所得的结果作为系数,字母和字母指数保持不变.

【例2】下列各题合并同类项的结果对不对?若不对,请改正.

(1)2x2+3x2=5x4;(2)3x+2y=5xy;

(3)7x2-3x2=4; (4)

(通过这一组题的训练,进一步熟悉法则)

【例3】求多项式3x2+4x-2x2-x+x2-3x-1的值,其中

【答案】3x2+4x-2x2-x+x2-3x-1=(3-2+1)x2+(4-1-3)x-1=2x2-1,当x=-3时,原式=2×(-3)

试一试:把x=-3直接代入例4这个多项式,可以求出它的值吗?与上面的解法比较一下,哪个解法更简便?

(通过比较两种方法,使学生认识到在求多项式的值时,常常先合并同类项,再求值,这样比较简便)

课堂练习.

课本P71练习第1~4题.

【答案】略

四、课堂小结

要牢记法则,熟练正确的合并同类项,以防止2x2+3x2=5x4的错误.

从实际问题中类比概括得出合并同类项法则并能运用法则正确地合并同类项.

第3课时去括号、添括号

教学目标

【知识与技能】

去括号与添括号法则及其应用.

【过程与方法】

在具体情境中体会去括号和添括号的必要性,能运用运算律去括号和添括号.

【情感、态度与价值观】

让学生接受“矛盾的对立双方能在一定条件下互相转化”的辩证思想和概念.

教学重难点

【重点】去括号和添括号法则.

【难点】当括号前是“-”号时的去括号和添括号.

教学过程

一、创设情境,引入新课

还记得我们前面用火柴棒摆的正方形吗?记录正方形的个数与所用火柴棒的根数.

若第一个正方形摆4根,以后每个摆3根,则n个正方形所用的火柴棒的根数为4+3(n-1).?

若每个正方形上方摆1根,下方摆1根,中间摆1根,还需加1根,则n个正方形所用的火柴棒的根数为n+n+(n+1).?

若每个正方形都摆4根,除第1个外,其余的都多1根,则n个正方形所用的火柴棒的根数为4n-(n-1).?

若先摆1根,再每个正方形摆3根,则n个正方形所用的火柴棒的根数为1+

搭n个正方形所需要的火柴棒的根数,用的计算方法不一样,所用火柴棒的根数相等吗?

生:相等.

师:那么我们怎样说明它们相等呢?

学生讨论、回答.

师评:4+3(n-1)用乘法的分配律把3乘到括号里,再合并得3n+1;4n-(n-1)可看成4n与-(n-1)的和,而-(n-1)可看成n-1的相反数,即为1-n,所以4n-(n-1)等于4n+1-n=3n+

活动一去括号

师:在代数式里,如果遇到括号,那么该如何去括号呢?

我们再看看以前做过的习题.

整式加减教案(13)

一、教学内容解析:

本节课选自:新人教版数学七年级上册§节,是学生进入初中阶段后,在学习了用字母表示数,单项式、多项式以及有理数运算的基础上,对同类项进行合并、探索、研究的一个课题。合并同类项是本章的一个重点,

在学生明白事物的分类的基础上引入同类项的概念,使学生熟练的会找多项式中的同类项。

其法则的应用是整式加减的基础,也是以后学习解方程、解不等式的基础。另一方面,这节课与前面所学的知识有千丝万缕的联系:合并同类项的法则是建立在数的运算的基础之上;在合并同类项过程中,要不断运用数的运算。可以说合并同类项是有理数加减运算的延伸与拓广。因此,这节课是一节承上启下的课。

让学生在合并同类项的基础上掌握以后学习解一元一次方程的解法,使学生的类推能力有所提高。

二、教学目标设置:

知识目标:

(1)使学生理解多项式中同类项的概念,会判断几个单项式是不是同类项。

(2)使学生掌握合并同类项法则,能熟练运用合并同类项法则进行同类项的合并。

能力目标:

(1)在具体的情景中,通过观察、比较、交流等活动认识同类项,了解数学分类的思想;并且能在多项式中准确判断出同类项。

(2)在具体情景中,通过探究、交流、反思等活动获得合并同类项的法则,体验探求规律的思想方法;并熟练运用法则进行合并同类项的运算,体验化繁为简的数学思想。

过程与方法:

通过理解同类项的“两同两无关”、 合并同类项的“一变两不变”以及总结合并同类项的步骤“一找二变三移四结五合并”,以口诀形式对知识进行梳理,培养学生的概括能力、表达能力和逻辑思维能力。

情感态度与价值观:

激发学生的求知欲,培养独立思考和合作交流的能力,让他们享受成功的喜悦。

教学重点、难点:

重点:同类项的概念、合并同类项的定义、法则及应用。

难点:正确判断同类项;准确合并同类项。

三、学生学情分析:

七年级学生刚刚跨入少年期,理性思维的发展还很有限,他们在身体发育、知识经验、心理品质方面,依然保留着小学生的天真活泼、对新生事物很感兴趣、求知欲望强、具有强烈的好奇心与求知欲,形象直观思维已比较成熟,但抽象思维能力还比较薄弱。于是我根据学生和中小学教材衔接的特点设计了这节课。

要学习同类项以及合并同类项要求学生对日常生活中的事物的分类。

学生在找同类项中问题不大,这部分的内容学生自己可以消化,而在合并同类项时有的同学对同类项中利用乘法交换律时容易出错,还有在多项式中找同类项时容易将单项式的系数找错,特别是系数是负数的,学生容易遗漏,老师要在课堂上加以讲解。

找同类项和合并同类项是本节课的重点也是难点,让学生在练习的基础上总结出合并同类项的口诀,更加简单的记忆。

四、教学策略分析:

基于本节课内容的特点和七年级学生的心理特征,我在教学中选择引导、探究式的学习模式。

本节课主要是找同类项跟合并同类项,而七年级学生对事物的分类已经能熟练的掌握,所以在教学中我先从事物的分类出发引导学生总结出同类项的概念,及合并同类项。

与学生建立平等融洽的关系,营造自主探索与合作交流的氛围,共同在探究、观察、练习等活动中运用学案来提高教学效率,验证结论,激发学生学习的兴趣。

在合并同类项时,针对接受能力差的学生我设计一些他能接受的实例加以讲解,如:一个苹果加两个苹果是几个苹果?得出的答案中与前面的问题没有发生变化的是什么?发生变化的是什么?以此来得出合并同类项的法则。

在给出同类项的概念后还是有一些同学不能快速的找出同类项,此时加一些练习让他们找再让同组的其他同学加以点评,使其加深影响。

在课堂上由小组合作学习,时同组的学生一起做练习,再由组长将本小组中存在的问题反馈,最后由其他小组的成员或组长给全班学生讲解这些问题,最后做到所有同学都会能掌握的目的。

五、教学过程:

教过程

教学环节 教 学 设 计 设计意图

情境引入

问题1:

我们在电视上看过动物园吧,那大家是不是发现兔子与兔子关在一个笼子里,老虎与老虎关在另一个笼子里,为何不把老虎与兔子关在同一个笼子里呢?

问题2:

(1)在日常生活中,你发现还有哪些事物也需要分类?能举出例子吗?如:垃圾、零钱、水果及各种产品分类.

(2)生活中处处有分类的问题,在数学中也有分类的问题吗?请在下列代数式中找出一些朋友,再把它们分别归类.并说明你的理由。

100a 240b 5ab2 -12

-9x2y3 5x2y3 60b -13ab2

200a 27

通过观看思考,使学生初步感受生活中的分类,进而激发学生学习兴趣。

形成概念

100t 、252t; 3x2、2x2;? 3ab2、4ab2; -9x2y3、5x2y3

思考:上面这些式子的分类对吗?观察每一类中的两个式子都是什么?它们放到多项式中叫做什么?带着这些问题请同学们看课本63页文字。(引导学生看书,让学生理解同类项的定义)

概念:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。

注意:

(1) 同类项与系数无关,与字母的排列顺序也无关

(2)几个常数项也是同类项。

让学生充分发挥主体作用,通过类比数字运算让学生自己得出同类项的概念,培养学生自主学习、类比学习的能力及归纳总结能力。

强化概念

思考:

下列各组中的两项是不是同类项?为什么?

(1)ab与3ab; (2)2a b与2ab ;(3)3xy与- xy;

(4)2a与2ab (5)与 ; (6)53与b3; 使学生牢固掌握同类项的知识,进一步加强对同类项概念的理解。增强应用意识,培养学生的发散思维。

知识链接

如果一个多项式中含有同类项,那么常常把同类项合并起来,使结果得到简化,那么怎样才能把同类项合并起来呢?请同学们思考下面的问题?

问题1:

100t +252t=_____________理由是________

3x2+2x2=_____________理由是_______

3ab2-4ab2=_____________理由是_______

-9x2y3+5x2y3=_____________理由是_______

问题2:

不在一起的同类项能否将同类项结合在一起?为什么?

例如:试化简多项式3x y-4xy -3+5x y+2xy +5

解:原式=3x y-4xy -3+5x y+2xy +5-------------找出

(用不同的标志把同类项标出来!)

=3x y+5x y+(-4xy )+2xy +(-3)+5 -----减法变加法

=3x y+5x y+(-4xy )+2xy +(-3)+5----加法交换律

=(3x y+5x y)+[(-4xy )+2xy )]+[(-3)+5)]------------加法结合律

=(3+5)x y+(-4+2)xy +2 ---------合并同类项

=8 x y-2 xy +2

运用加法交换律和结合律将同类项结合在一起,原多项式的值不变。

合并同类项: 把同类项合并成一项就叫做合并同类项

探讨:

合并同类项后,所得项的系数、字母以及字母的指数与合并前各同类项的系数、字母及字母的指数有什么联系?

法则:

合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变。

学生通过独立完成练习题,巩固了所学的知识,并能增强学生对合并同类项法则的运用。

通过提问方式引导学生回顾所学知识,使学生养成总结所学知识的良好学习习惯。

提问中鼓励同学积极发言,并对讲解或回答问题的同学每次奖励一颗小红星,以此来激励学生的学习兴趣,使学生始终保持积极的精神状态。

引出法则

例题:合并下列各式中的同类项:

(1)12x-20x+6x;(2)-9x2++6;(3)6a -5b +2ab+b -6a

解:1). 12x-20x+6x

原式=12x+(-20x)+6x

=[12+(-20)+6]x

=-2x

方法是:(1)系数:各项系数相加作为新的系数。

(2)字母以及字母的指数不变。



整式加减教案(14)

一、知识目标:理解整式的加减实质就是去括号,合并同类项,其结果仍然是整式;掌握学生在掌握合并同类项、去括号与添括号的基础上,掌握整式加减的一般步骤;能够正确地进行整式的加减运算。

二、能力目标:经历用字母表示数量关系的过程,发展符号感;培养用代数的方法解决实际生活中的'问题的能力和口头表达能力。

三、情感目标:渗透教学知识来源于生活,又要为生活而服务的辩证观点;整式的加减实质上就是去括号,合并同类项,结果总是比原来简洁,体现了数学的简洁美。

教学重难点:利用去括号、合并同类项进行整式的加减运算;根据实际问题中的数量关系列出算式,并求出结果;

教材处理与数学方法

1.调动学生自觉性与积极性,由浅入深地传授知识,提高学生学习兴趣。

2.运用启发式教学,让学生自行归纳出整式的加减的步骤。

3.利用不同记号标出各同类项,有助学生合并同类项。

4.让学生在实际解题过程中,体会到整式的加减实际上就是已经学过的去括号法则与合并同类项这两个知识的综合,这样更有利于学生学会将新知转化为旧知,不断更新知识结构。

5.充分利用教学时间,在课堂上进行针对性辅导,把共性问题与典型题目展示,引导学生发现问题与纠错能力。

四、(一)复习旧知识

1、合并同类项定义、法则;

2、去括号法则。

3、 基础训练

计算

(1)(2x-3y)-(5x+4y)

(2) -3ab-4a2+3 a2 -(-2ab)

(3) (3 a2 -ab+7)-(-4 a2+2ab+7)

(4) (-x+2x2+5)+(4x2-3-6x)

4、列式计算

(1) 2x2-3x+1与-3x2+5x-7 的和;

(2)-x2+3xy-2y2 与-2x2+4xy-y2 的差;

(3)一个多项式加上5x2+4x-1 得-8x2+6x+2 ,求这个多项式;

5、求值:2a2-b2+(2b2-a2)-(a2+2b2), 其中a=1/3,b=3.

五、归纳小结

1.整式的加减实际上就是______________________.

2.整式的加减的步骤,一般分为_____________________.

3.整式加减的结果是__________或__________(单项式或多项式)。结果更简单,体现我们数学中的简洁美。

整式的加减是承有理数的加减、乘、除、乘方的运算,续整式方程的一系列运算,是学生从小进入初中含有字母运算的变化,认知上有新的突破,在教法引入过渡中,有其奥妙学法教法值得反思。

六、随堂练习:课本70页练习

七、布置作业:课本71页5,6题。

整式加减教案(15)

教学目的

1、使学生在掌握合并同类项、去括号法则基础上进行整式的加减运算。

2、使学生掌握整式加减的一般步骤,熟练进行整式的加减运算。

教学分析

重点:整式的加减运算。

难点:括号前是-号,去括号时,括号内的.各项都要改变符号。

突破:正确理解去括号法则,并会把括号与括号前的符号理解成整体。

教学过程

一、复习

1、 叙述合并同类项法则。

2、 练习题:(用投影仪显示、学生完成)

3、 叙述去括号与添括号法则。

4、 练习题:(用投影仪显示、学生完成)

5、化简:

y2+(x2+2xy-3y2)-(2x2-xy-2y2)

二、新授

1、引入

整式的化简,如果有括号,首先要去括号,然后合并同类项,所以去括号和合并同类项是整式加减的基础。

2、例题

例1 (P166例1)(学生自学后,教师按以下提示点拔即可)

求单项式5x2y,-2 x2y,2xy2,-4xy2的和。

提示:式子5x2y+(-2 x2y)+2xy2+(-4xy2)就是这四个单项式的和。几个整式相加减,通常用括号把每一个整式括号起来,再用加减号连接。

解:(略,见教材P166)

练习:P167 1、2

例2(P166例2)

求3x2-6x+5与4x2-7x-6的和。

解:(3x2-6x+5)+(4x2-7x-6) (每个多项式要加括号)(口述:文字叙述的整式加减,对每个整式要添上括号)

=3x2-6x+5+4x2-7x-6 (去括号)

=7x2+x-1 (合并同类项)

练习:P167 3

例3。(P166例3)(学生自学后,完成练习,教师矫正练习错误)

求2x2+xy+3y2与x2-xy+2y2的差。

解:(2x2+xy+3y2)-( x2-xy+2y2)

= 2x2+xy+3y2-x2+xy-2y2

=x2+2xy+y2

3、归纳整式加减的一般步骤。(最好由学生归纳)

整式加减实际上就是合并同类项。在运算中,如果遇到括号,按去括号法则,先去括号,再合并同类项。

三、练习

补:已知:A=5a2-2b2-3c2,B=-3a2+b2+2c2,求2A-3B(视时间是否足够而定)

四、小结(用投影仪板演)

1、文字叙述的整式加减,对每一个整式要添上括号。

2、有括号的要先去括号,如果双有中括号或大括号,要先去小括号,后去中括号,再去大括号。

五、作业

1、 P169:A:1(3、4),3,5,6,7,8。B:1,2。(可适当减少些)

整式加减教案(16)

七年级《整式的加减》 教案

知识目标:

(1)使学生在掌握合并同类项的基础上,掌握去括号法则。

(2)正确地进行简单的整式加减运算。

能力目标:培养学生基本的`运算技巧和能力。

情感目标:使学生逐渐形成事物变化、相互联系和相互转化的观点,并在学习中培养学生良好的学习习惯、独立思考、勇于探索的精神。

教学重点、难点:

重点 去括号法则。教学

难点 正确运用去括号法则,减少运算中的符号错误。

教学用具: 多媒体

教 学 过 程 :

(一)、情景引入

1、多媒体展示游戏:把我的出生月份数乘2,加10,再把和乘5,加上我家的人口数,结果为133

你出生于8月份,你家有3口人

2、猜数游戏的数学原理常常与代数式的运算有关

3、知识梳理

-2x+3y-4z 共有 项,其中第三项是:。

1、写出 2a2b 的一个同类项:

2、已知4a2b3与a2mbn-1是同类项,则m= ____,n=_____.

(二)实践应用, 拓展延

如图4-7,要计算这个图形的面积,你有几种不同的方法?请计算结果。

2、用分配律计算:

(1) +(a-b+c)

(2) -(a-b+c)

3、代数式运算的去括号法则:

括号前是+号,把括号和它前面的+号去掉,括号里各项都不变号;括号前是-号,把括号和它前面的-号去掉,括号里各项都改变符号

4、顺口溜

去括号,看符号

是+号,不变号

是-号,全变号

5、辩一辩:指出下列各式是否正确?如果错误,请指出原因.

(1) a-(b-c+d) = a-b+c+d

(2) -(a-b)+(-c+d)= a+b-c-d

(3) a-3(b-2c)=a-3b+2c

(4) x-2(-y-3z+1)=x-2y+6z

6.注意:(1)去括号时应将括号前面的符号连同括号一起去掉.

(2)要注意括号前面是 -号时,去掉括号后,括号里各项都要改变符号;不能只改变某几项而忘记改变其余的符号

(3)若括号前面是数字因数时,.应乘以括号里的每一项,不要漏乘.

7:练一练

(三)作业

温馨提示:
本文【整式加减教案(热门16篇)】由作者教培参考提供。该文观点仅代表作者本人,培训啦系信息发布平台,仅提供信息存储空间服务,若存在侵权问题,请及时联系管理员或作者进行删除。
我们采用的作品包括内容和图片部分来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
内容侵权、违法和不良信息举报
Copyright @ 2025 牛求艺 All Rights Reserved 版权所有.