教育那些事儿
从事教育报道十余年,这里将发布教育最新动态,洞悉业内新风向,说说...
发布时间: 2024-07-08 11:00:55
题文
桌上放着七只杯子;杯口全朝上,每次翻转四个杯子:问能否经过若干次这样的翻动,使全部的杯子口都朝下______(能或不能)?
题型:未知 难度:其他题型
答案
这不可能.我们将口向上的杯子记为:“0”,口向下的杯子记为“1”.
开始时,由于七个杯子全朝上,所以这七个数的和为0,是个偶数.一个杯子每翻动一次,所记数由0变为1,或由l变为0,改变了奇偶性.
每一次翻动四个杯子,因此,七个数之和的奇偶性仍与原来相同.
所以,不论翻动多少次,七个数之和仍为偶数.而七个杯子全部朝下,和为7,是奇数,因此,不可能.
故答案为:不能.
解析
该题暂无解析
考点
据培训啦专家说,试题“桌上放着七只杯子;杯口全朝上,每次翻转四.....”主要考查你对 [有理数定义及分类 ]考点的理解。
有理数定义及分类
有理数的定义:
有理数是整数和分数的统称,一切有理数都可以化成分数的形式。
有理数的分类:
(1)按有理数的定义:
正整数
整数{ 零
负整数
有理数{
正分数
分数{
负分数
(2)按有理数的性质分类:
正整数
正数{
正分数
有理数{ 零
负整数
负数{
负分数